Discrepancy in Arithmetic Progressions

نویسندگان

  • JIŘÍ MATOUŠEK
  • JOEL SPENCER
چکیده

It is proven that there is a two-coloring of the first n integers forwhich all arithmetic progressions have discrepancy less than const.n1/4. Thisshows that a 1964 result of K. F. Roth is, up to constants, best possible. Department of Applied Mathematics, Charles University, Malostranské nám. 25,118 00 Praha 1, Czech RepublicE-mail address: [email protected] Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NewYork 10012E-mail address: [email protected] License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrepancy of Sums of Three Arithmetic Progressions

The set system of all arithmetic progressions on [n] is known to have a discrepancy of order n1/4. We investigate the discrepancy for the set system S3 n formed by all sums of three arithmetic progressions on [n] and show that the discrepancy of S3 n is bounded below by Ω(n1/2). Thus S3 n is one of the few explicit examples of systems with polynomially many sets and a discrepancy this high.

متن کامل

Discrepancy in generalized arithmetic progressions

Estimating the discrepancy of the set of all arithmetic progressions in the first N natural numbers was one of the famous open problem in combinatorial discrepancy theory for a long time, successfully solved by K. Roth (lower bound) and Beck (upper bound). They proved that D(N) = minχ maxA | ∑ x∈A χ(x)| = Θ(N1/4), where the minimum is taken over all colorings χ : [N ] → {−1, 1} and the maximum ...

متن کامل

Discrepancy of Sums of two Arithmetic Progressions

Estimating the discrepancy of the hypergraph of all arithmetic progressions in the set [N ] = {1, 2, . . . , N} was one of the famous open problems in combinatorial discrepancy theory for a long time. An extension of this classical hypergraph is the hypergraph of sums of k (k ≥ 1 fixed) arithmetic progressions. The hyperedges of this hypergraph are of the form A1 + A2 + . . . + Ak in [N ], wher...

متن کامل

Discrepancy of Cartesian Products of Arithmetic Progressions

We determine the combinatorial discrepancy of the hypergraph H of cartesian products of d arithmetic progressions in the [N ]d–lattice ([N ] = {0, 1, . . . ,N − 1}). The study of such higher dimensional arithmetic progressions is motivated by a multi-dimensional version of van der Waerden’s theorem, namely the Gallai-theorem (1933). We solve the discrepancy problem for d–dimensional arithmetic ...

متن کامل

On the Hereditary Discrepancy of Homogeneous Arithmetic Progressions

We show that the hereditary discrepancy of homogeneous arithmetic progressions is lower bounded by n1/O(log logn). This bound is tight up to the constant in the exponent.

متن کامل

On rainbow 4-term arithmetic progressions

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995